13 research outputs found

    An Integrated, Virtualized Joint Edge and Fog Computing System with Multi-RAT Convergence

    Get PDF
    Notably, developing an innovative architectural network paradigm is essential to address the technical challenging of 5G applications' requirements in a unified platform. Forthcoming applications will provide a wide range ofnetworking, computing and storage capabilities closer to the endusers.In this context, the 5G-PPP Phase two project named "5GCORAL:A 5G Convergent Virtualized Radio Access Network Living at the Edge" aims at identifying and experimentally validating which are the key technology innovations allowing for the development of a convergent 5G multi-RAT access based on a virtualized Edge and Fog architecture being scalable, flexible and interoperable with other domains including transport, core network and distant Clouds. In 5G-CORAL, an architecture is proposed based on ETSI MEC and ETSI NFV frameworks in a unified platform. Then, a set of exemplary use cases benefiting from Edge and Fog networks in near proximity of the end-user are proposed for demonstration on top of connected car, shopping mall and high-speed train platforms.This work has been partially funded by the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant num. 761586

    Candidate biomarkers from the integration of methylation and gene expression in discordant autistic sibling pairs

    Get PDF
    While the genetics of autism spectrum disorders (ASD) has been intensively studied, resulting in the identification of over 100 putative risk genes, the epigenetics of ASD has received less attention, and results have been inconsistent across studies. We aimed to investigate the contribution of DNA methylation (DNAm) to the risk of ASD and identify candidate biomarkers arising from the interaction of epigenetic mechanisms with genotype, gene expression, and cellular proportions. We performed DNAm differential analysis using whole blood samples from 75 discordant sibling pairs of the Italian Autism Network collection and estimated their cellular composition. We studied the correlation between DNAm and gene expression accounting for the potential effects of different genotypes on DNAm. We showed that the proportion of NK cells was significantly reduced in ASD siblings suggesting an imbalance in their immune system. We identified differentially methylated regions (DMRs) involved in neurogenesis and synaptic organization. Among candidate loci for ASD, we detected a DMR mapping to CLEC11A (neighboring SHANK1) where DNAm and gene expression were significantly and negatively correlated, independently from genotype effects. As reported in previous studies, we confirmed the involvement of immune functions in the pathophysiology of ASD. Notwithstanding the complexity of the disorder, suitable biomarkers such as CLEC11A and its neighbor SHANK1 can be discovered using integrative analyses even with peripheral tissues

    Candidate biomarkers from the integration of methylation and gene expression in discordant autistic sibling pairs

    Get PDF
    While the genetics of autism spectrum disorders (ASD) has been intensively studied, resulting in the identification of over 100 putative risk genes, the epigenetics of ASD has received less attention, and results have been inconsistent across studies. We aimed to investigate the contribution of DNA methylation (DNAm) to the risk of ASD and identify candidate biomarkers arising from the interaction of epigenetic mechanisms with genotype, gene expression, and cellular proportions. We performed DNAm differential analysis using whole blood samples from 75 discordant sibling pairs of the Italian Autism Network collection and estimated their cellular composition. We studied the correlation between DNAm and gene expression accounting for the potential effects of different genotypes on DNAm. We showed that the proportion of NK cells was significantly reduced in ASD siblings suggesting an imbalance in their immune system. We identified differentially methylated regions (DMRs) involved in neurogenesis and synaptic organization. Among candidate loci for ASD, we detected a DMR mapping to CLEC11A (neighboring SHANK1) where DNAm and gene expression were significantly and negatively correlated, independently from genotype effects. As reported in previous studies, we confirmed the involvement of immune functions in the pathophysiology of ASD. Notwithstanding the complexity of the disorder, suitable biomarkers such as CLEC11A and its neighbor SHANK1 can be discovered using integrative analyses even with peripheral tissues

    Spinal cord involvement and paroxysmal events in "Infantile Onset Transient Hypomyelination" due to TMEM63A mutation

    No full text
    Monoallelic mutations on TMEM63A have been recently reported as cause of a previously unrecognized disorder named "infantile-onset transient hypomyelination". Clinical and neuroradiological presentation is described as highly similar to Pelizaeus-Merzbacher Disease but evolution over time was surprisingly benign with a progressive spontaneous improving course. We report on a new TMEM63A-mutated girl. The clinical picture was similar to the one already described except for the presence of recurrent episodes of unilateral eyelid twitching, and for the evidence of spinal cord involvement on MRI. These are interesting findings helping in distinguishing this condition from classic PMD since early disease stages. However, additional observations are needed to confirm if these are common features of this condition

    The Italian autism network (ITAN): A resource for molecular genetics and biomarker investigations

    No full text
    Background: A substantial genetic component accounts for Autism Spectrum Disorders (ASD) aetiology, with some rare and common genetic risk factors recently identified. Large collections of DNAs from thoroughly characterized ASD families are an essential step to confirm genetic risk factors, identify new variants and investigate genotype-phenotype correlations. The Italian Autism Network aimed at constituting a clinical database and a biorepository of samples derived from ASD subjects and first-degree relatives extensively and consistently characterized by child psychiatry centers in Italy. Methods: The study was approved by the ethical committee of the University of Verona, the coordinating site, and by the local ethical committees of each recruiting site. Certified staff was specifically trained at each site for the overall study conduct, for clinical protocol administration and handling of biological material. A centralized database was developed to collect clinical assessment and medical records from each recruiting site. Children were eligible for recruitment based on the following inclusion criteria: age 4-18 years, at least one parent or legal guardian giving voluntary written consent, meeting DSM-IV criteria for Autistic Disorder or Asperger's Disorder or Pervasive Developmental Disorder NOS. Affected individuals were assessed by full psychiatric, neurological and physical examination, evaluation with ADI-R and ADOS scales, cognitive assessment with Wechsler Intelligence Scale for Children or Preschool and Primary, Leiter International Performance Scale or Griffiths Mental Developmental Scale. Additional evaluations included language assessment, the Krug Asperger's Disorder Index, and instrumental examination such as EEG and structural MRI. DNA, RNA and plasma were collected from eligible individuals and relatives. A central laboratory was established to host the biorepository, perform DNA and RNA extraction and lymphocytes immortalisation. Discussion: The study has led to an extensive collection of biological samples associated with standardised clinical assessments from a network of expert clinicians and psychologists. Eighteen sites have received ADI/ADOS training, thirteen of which have been actively recruiting. The clinical database currently includes information on 812 individuals from 249 families, and the biorepository has samples for 98% of the subjects. This effort has generated a highly valuable resource for conducting clinical and genetic research of ASD, amenable to further expansion. Keywords: Autism Spectrum disorders; Biomarkers; Biorepository; Genetics

    Transcriptome signatures from discordant sibling pairs reveal changes in peripheral blood immune cell composition in Autism Spectrum Disorder

    No full text
    Notwithstanding several research efforts in the past years, robust and replicable molecular signatures for autism spectrum disorders from peripheral blood remain elusive. The available literature on blood transcriptome in ASD suggests that through accurate experimental design it is possible to extract important information on the disease pathophysiology at the peripheral level. Here we exploit the availability of a resource for molecular biomarkers in ASD, the Italian Autism Network (ITAN) collection, for the investigation of transcriptomic signatures in ASD based on a discordant sibling pair design. Whole blood samples from 75 discordant sibling pairs selected from the ITAN network where submitted to RNASeq analysis and data analyzed by complementary approaches. Overall, differences in gene expression between affected and unaffected siblings were small. In order to assess the contribution of differences in the relative proportion of blood cells between discordant siblings, we have applied two different cell deconvolution algorithms, showing that the observed molecular signatures mainly reflect changes in peripheral blood immune cell composition, in particular NK cells. The results obtained by the cell deconvolution approach are supported by the analysis performed by WGCNA. Our report describes the largest differential gene expression profiling in peripheral blood of ASD subjects and controls conducted by RNASeq. The observed signatures are consistent with the hypothesis of immune alterations in autism and an increased risk of developing autism in subjects exposed to prenatal infections or stress. Our study also points to a potential role of NMUR1, HMGB3, and PTPRN2 in ASD

    The Italian autism network (ITAN): a resource for molecular genetics and biomarker investigations

    No full text
    A substantial genetic component accounts for Autism Spectrum Disorders (ASD) aetiology, with some rare and common genetic risk factors recently identified. Large collections of DNAs from thoroughly characterized ASD families are an essential step to confirm genetic risk factors, identify new variants and investigate genotype-phenotype correlations. The Italian Autism Network aimed at constituting a clinical database and a biorepository of samples derived from ASD subjects and first-degree relatives extensively and consistently characterized by child psychiatry centers in Italy

    Analysis of RBFOX1 gene expression in lymphoblastoid cell lines of Italian discordant autism spectrum disorders sib-pairs

    No full text
    Several lines of evidence suggest that RBFOX1 is a key regulator of transcriptional and splicing programs in neural cells during development, and that it is expressed in a neuronal module enriched for known autism susceptibility genes. We have investigated its expression by semiquantitative RT-PCR in accessible nonbrain resources in eighteen autism spectrum disorder sib-pairs belonging to the Italian Autism Network cohort. RBFOX1 gene expression was detected in lymphoblastoid cell lines but not in lymphocytes. No significant differences between autism spectrum disorders and non-affected brothers were found. We were not able to replicate in lymphoblastoid cell lines the previously reported RBFOX1 gene downregulation in autism, even if a trend was observed. This might be due to less pronounced transcription level differences in RBFOX1 gene expression in lymphoblastoid cell lines than in brain samples. \ua9 2014 Elsevier Ltd

    The "DICA" endoscopic classification for diverticular disease of the colon shows a significant interobserver agreement among community endoscopists

    No full text
    BACKGROUND AND AIM: An endoscopic classification of Diverticular Disease (DD), called DICA (Diverticular Inflammation and Complication Assessment) is currently available. It scores severity of the disease as DICA 1, DICA 2 and DICA 3. Our aim was to assess the agreement levels for this classification among an endoscopist community setting. METHODS: A total of 66 endoscopists independently scored a set of DD endoscopic videos. The percentages of overall agreement on the DICA score and a free-marginal multirater kappa (κ) coefficient were reported as statistical measures of the inter-rater agreement. RESULTS: The overall agreement levels were: 70.2% for DICA 1, 70.5% for DICA 2, 81.3% for DICA 3. The free marginal κ was: 0.553 for DICA 1, 0.558 for DICA 2, 0.719 for DICA 3. The agreement levels among the expert group were: 78.8% for DICA 1, 80.2% for DICA 2, 88.5% for DICA 3. The free marginal κ among the expert group were: 0.682 for DICA 1, 0.712 for DICA 2, 0.828 for DICA 3. The agreement of expert raters on the single item of the DICA classification was superior to the agreement of the overall group. CONCLUSIONS: The overall inter-rater agreement for DICA score in this study ranges from moderate to good, with a significant improvement in the expert subgroup of raters. Diverticular Inflammation and Complication Assessment is a simple and reproducible endoscopic scoring system
    corecore